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Supplementary Note

RNAseq: statistical analysis.

We define the two reciprocal F; crosses between the inbred strains A and B as AXB and BXA where the
maternal strain is given first. Suppose there are in total K; F; samples and K, inbred samples. We first count the
number of RNA-seq reads that overlap exonic regions of each gene within each sample. For the ith (i =

1, ..., Ky) F1 sample, a gene has three counts: the total read counts (TReC) (m;), the number of allele specific
reads mapped to strain A (n;4), and the number of allele-specific reads mapped to strain B (n;g). For the lth
(l=K;+1,..,K; + K;) inbred sample, a gene only has one count: the TReC (m;). To remove lowly expressed
genes, we exclude from our analysis any gene with a maximal TReC across all samples less than 50. We model
the TReC by a negative binomial distribution and the allele-specific counts by a beta-binomial distribution to allw
for possible over-dispersion commonly observed in RNAseq data at each gene."” For genes without enough
allele-specific counts (i.e., average number of allele-specific counts in both AXB and BXA and both sexes are
smaller than 5), we only modeled the TReC data. For the ith F; sample, we model n;p with the following beta-
binomial distribution:
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where n; = n;, + n;p is the total number of allele-specific reads. The parameter ¢ is an over-dispersion
parameter. When ¢ = 0, there is no over-dispersion and the beta-binomial distribution is simplified to a
binomial distribution. We model the relationship between m;, the expected proportion of allele-specific reads
from strain B with paternal/maternal status as:
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log (%) = (by; + by, x)I( female) +(b,,, +b,,x,)I(male) (2)

where x; = 1 if the sample is a AXB cross, otherwisex; = —1. I(event) is an indicator function which equals 1 if
the event is true, otherwise 0.

For TReC, we model m; (wherel = K; + 1, ..., K; + K;) via the negative binomial distribution with mean y; and
overdispersion ¢:
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where log(u,) = B, + Bk, + p,1(male) + B,dom + B,I(male)* dom +17, with
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0 if sample / is an 4 or B cross
dom=] _ , and
1 if sample / is an Ax B or Bx A cross
(0 if sample / 1s an 4 cross
b'y, if sample / is a B cross (4)

S =b,, +log {1 +exp(b'y, + blf)} —log{l +exp(-b,,)} if sample / is an Ax B cross

log {1 +exp(b'y,— b, )} —log{l +exp(-b, )} if sample / is a Bx A4 cross.

for female samples and

log{l +exp(-b,,)} —logi{l +exp(-b, )} if sample / is an 4 cross
|y, +log{l +exp(-b,,)} —log{l +exp(-b, )} if sample / is a B cross
= -b,, +log {1 +exp(b',, + blm)} —log{l +exp(-b,,)} if sample / is an Ax B cross
log {1 +exp(b',,— b, )} —log{l +exp(-b,,)} if sample / is a Bx A4 cross

for male samples.

In this model we account for k;, the library size (the total number of reads of sample ) which is important when
modeling the total number of reads mapped to a given gene. We also consider sex effects which include both
strain-specific and parent-of-origin-specific sex effects. In addition, sex specific dominant effects are also
modeled. If the overdispersion parameter ¢ = 0, the negative binomial distribution reduces to a Poisson
distribution.

The joint likelihhood of the combined F; and inbred samples is therefore:

K1+K2

K1
L(bO_f"bOm’b'Of’b'Om’blf’blmﬁ/J)O’/J)lﬁﬁzﬂﬁ3’ﬁ45<p9¢) = HP(”[B;”i’”ia¢) 1_‘[ p(my; u;,9).

which we maximize for obtaining the maximal likelihood parameter estimates.

We test strain and parent-of-origin effects using likelihood ratio tests as follows:

Strain effect: H,:b,, =b,, =b',, =b',, =0 vs. H b, =0, b, =0,b' =0o0rb', =0. (5)

Parent of origin effect:  H,:b,=b,=0 vs. H,:b,=0o0rb, =0. (6)

For sex effects, we consider the following four tests:

joint sex effects : H, :bof -b,, =b'0f—b'0m =b1f -b, =p,=p,=0.

(additive) strain specific sex effect:  H,:b,, -b,, =b',,~b';, =0.
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parent of origin specific sex effect:  H;:b,, =b,,.

dominant specific sex effect: ~ H,:f, =0.

Note that when testing for additive strain effects, we set by f = by, = 0 which is equivalent to 4 = 75 = 0.5
where 14 and g are the proportions of reads mapped to strain A and B. For autosomal genes, this assumption
is reasonable. However, for chrX, this assumption may not be correct. One X chromosome is silenced in each
female cell as a result of X chromosome inactivation and, in a F; mouse, the choice of which X chromosome is
silenced may not be random and can be biased by alleles at the X-linked X controlling element (Xce).*” Ignoring
Xce effects could lead to the incorrect identification of many genes with apparent strain effects that are simply
due to the Xce effect. To account for the Xce effect, we modified the method: for each F; female sample, we
calculate t;4 and ;5 which are the averages of the proportions of reads that mapped to strain A and B across all
genes on the X chromosome (except Xist, since it is expressed from the inactive X) and replaced b in Equation

(2) with log (T‘—B) + by, and reset ; in Equation (4) for female mice to:
A

Ti

0 if sample / is an 4 cross

by, if sample / is a B cross

T,
logl1+exp(log(-£)+b' .+b
g{ p( g(TiA) 0.F I,F)} if sample / is an Ax B cross
= —log{l +exp(b, )} +1og(27,,)

T.
log I1+exp(log(-£)+b', .- b,
g{ p( g(TiA) 0,F l,F)} ifsample l iS anA Cross.

—log{l +exp(-b, )} +log(27,,)
and for male mice to:

-log {1 +exp(=b, )} +log {2} if sample / is an 4x. cross

e b, —log {1 +exp(=b, 5 )} if sample / is an Bx. cross

We can then follow the same estimation and testing procedures for the strain and parent-of-origin effects.
When modeling total read counts for genes with no allele specific counts, we find that when there exists no
strain effect, the parent of origin effect is not identifiable. We modify the above models slightly to avoid this
model identifiability issue. Details can be found in Zou et al. (submitted). Though compared to other studies, our
RNA-seq data has a larger number of samples and higher sequencing depth, our test statistics are inflated and
depart from asymptotic chi-square distributions. Therefore, we employ the genomic control® approach common
to association mapping and adjust our test statistics by appropriate inflation factors. Our extensive simulations
showed superior performance of the genomic control approach. To account for multipe testing across genes, we
used the R package ‘qvalue’’ to estimate the g-value for each gene and for each test. For the strain effect test,
because the majority of genes have strain effect, the g-values could be even larger than p-values. Therefore we
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use a significance cutoff whereby both the p-value and g-value must be smaller than 0.05. The significance
assement of imprinting effects are described in the next paragraph.

For each gene, we calculated its imprinting p-value by combining the imprinting p-values of three crosses using
Fisher’s method. We then calculated g-values based on the (meta-) imprinting p-values. One final modification
was made to facilitate the identification of parent of origin effects. Since imprinting status appears to have
spatial dependence such that two genes adjacent to each other tend to have the same imprinting status, we
decided to model the (meta-) imprinting p-values by a Hidden Markov Model (HMM) to detect some weaker
parent-of-origin effects by borrowing information from nearby genes. Specifically, we construct a HMM with
two states: imprinted or non-imprinted. For the non-imprinted state, we assume the p-values follow a uniform
distribution, and for the imprinting state, we assume the p-values follow a beta distribution beta(0.03,200).
Denote the imprinted/non-imprinted states by | and N respectively. The transition probability of this HMM is set
as Pr(N—-N) =0.99, Pr(N—I) = 0.01, Pr(lI=N) = 0.10, and Pr(I-1) = 0.90. The input data of this HMM are the
imprinting p-values for 11828 genes, and their genomic position. We apply the Vertibi algorithm to find the most
likely underlying states chromosome by chromosome. Each of the final list of 98 imprinting genes has g-value
smaller than 0.01 and/or is identified as imprinted by the HMM. Only 8 imprinting genes are identified by HMM
but do not pass g-value cutoff. The imprinting p-values of these 8 genes range from 0.00024 to 0.0084, and thus
they do have marginally significant imprinting effect, but not significant enough to survive multiple testing

correction.
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